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Abstract 
As humankind embarks on longer space missions farther 
from home, the requirements and environments for 
scheduling the activities performed on these missions are 
changing. As we begin to prepare for these missions it is 
appropriate to evaluate the merits and applicability of the 
different types of scheduling engines. Scheduling engines 
temporally arrange tasks onto a timeline so that all 
constraints and objectives are met and resources are not 
overbooked. Scheduling engines used to schedule space 
missions fall into three general categories: batch, mixed- 
initiative, and incremental. This paper , presents an 
assessment of the engine types, a discussion of the impact 
of human exploration of the moon and Mars on planning 
and scheduling, and the applicability of the different types 
of scheduling engines. This paper will pursue the 
hypothesis that incremental scheduling engines may have a 
place in the new environment; they have the potential to 
reduce cost, to improve the satisfaction of those who 
execute or benefit from a particular timeline (the 
customers), and to allow astronauts to plan their own tasks 
and those of their companion robots. 

Introduction 
The National Aeronautics and Space Administration 
(NASA) is charting a bold new course into the cosmos, a 
journey that will take humans back to the Moon, and 
eventually to Mars and beyond. Currently operations is 
the most expensive part of many space missions. The cost 
of operating the International Space Station (ISS) is in 
excess of one billion dollars per year. One way to reduce 
the cost of humanlund’s journey into the cosmos is to 
develop new methods of planning and scheduling and new 
software to support those methods. The current approach 
of scheduling human missions manually needs to be 
replaced by automated approaches. 
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In addition, every avenue should be taken which can 
reduce the stress and tedium of extended space missions 
far from home. A mission to Mars is expected to take 
about two years; and, during much of the mission, light- 
time delays (typically 10 to 15 minutes) will negate voice 
conversations with the ground. One good way to address 
these human factors issues is to give the astronauts control 
over their daily schedule. The current “job-jar’’ paradigm 
used on the ISS only allows the astronauts to select 
additional optional tasks which use limited resources. 
This job jar is prepared on the ground and uplinked daily. 
True astronaut control would allow them to schedule or re- 
schedule most tasks. For some foreseeable contingencies, 
complete crew autonomy in planning and scheduling their 
daily tasks may be required. 
The search for cost reduction and astronaut autonomy 
must take into account that the equipment on the journey 
will be the most complex hardware ever developed, the 
information sought will be at the cutting edge of human 
endeavor, and the procedures will be intricate and 
exacting. Scheduling will be made more difficult by a 
scarcity of resources. The scheduling system must be able 
to handle both the complexity of the tasks and procedures 
(to ensure a valid schedule) and the flexibilities of the 
procedures and the equipment (to effectively utilize 
available resources). 

Scheduling Overview 
Planning and scheduling software temporally arranges 
tasks onto a timeline so that all constraints and objectives 
are met and resources are not overbooked. The scheduling 
unit or scheduling request addressed by the scheduling 
software is an “operations sequence” containing multiple 
tasks and the temporal relationships between the tasks. 

Example: Dinner is a scheduling unit, which 
includes tasks that prepare dmner, eat dinner, and 
cleanup. It does not make sense to do only one or 
two of these tasks; i.e., to schedule a partial sequence. 



The tasks also have an order or temporal 
relationship; each follows the other. 

The example above is a simple operations sequence. In 
the space activity domain, temporal relationships such as 
sequential, overlap, during, and avoid are common. 
Classically, there are thirteen temporal relationships 
possible between two tasks (Allen, 1983). Additionally 
the operations sequence can have parallel paths, 
repetitions, and other arrangements. In the domain of 
human space flight, operations sequences are often 
networks, with embedded sub-networks, of tasks. To 
emphasize the complexity of the problem, the term task 
networks will be used for the remainder of this paper. A 
task network with only one task and no temporal 
relationships is the trivial case of a network, and is the 
simplest scheduling unit. 
The tasks of a task network use resources. In the dinner 
example, each task would use several resources (power, 
microwave oven, water, food stock, waste disposal, etc.) in 
affering and specific quantities. Tasks might also have 
condition requirements which constrain the scheduling to 
happen before, during or after a certain condition, such as 
in daylight. Condition requirements are a form of 
temporal requirements, but are not labeled as such to 
avoid confusion with temporal relationships between the 
tasks. 
The computer representation of a scheduling unit and its 
components is called a model. The quantitative and 
associative values in a model are expressed either as rules 
or as fields in a dynamic hierarchy of forms. 
The core logic of the planning and scheduling system 
must understand the models and must temporally arrange 
multiple complex task networks to generate a valid 
schedule. This logic is commonly called a scheduling 
engine. In the space activity domain scheduling is NP- 
hard (has no analytical solution), therefore scheduling 
engines use algorithmic, heuristic, artificial intelligence, 
and human-assisted techniques to solve the space 
scheduling problem. 
Scheduling engines fall into three general categories: (1) 
batch, which operate on multiple models simultaneously, 
(2) incremental, which operate on one model at a time, 
and (3) mixed-initiative, which is a human and software 
working together. In the space domain, most scheduling 
systems use more than one of class of scheduling engine. 

Classes of Scheduling Engine 
Scheduling engines are generally divided into three 
classes based on how they handle multiple scheduling 
requests. The classes - batch, incremental, and mixed- 
initiative - are discussed &low. 

Batch Scheduling Engines 
Batch engines accept a batch of independent scheduling 
requests and put them on a timeline by assigning the start 
and stop times of each task. The tasks to be scheduled are 
often associated only by the use of the same resources. 
Batch engines search for an optimum or near-optimum 
timeline based on analytical, heuristic, algorithmic and/or 
artificial intelligence techniques. The search methods 
used by batch engines must simultaneously meet the 
requirements of many tasks and many independent 
temporal networks. This requirement places a limitation 
on the modeling schema. However, unless all 
requirements are modeled, the resulting timeline has little 
chance of being valid. Additionally, scheduling a large 
number of requests may require considerable computer 
resources. 
Schedule-repair engines are a special case of batch 
engines; the batch of requests fed to the engine is the tasks 
already on a timeline, but having constraint and/or 
resource violations. Conflicts occur when the initial 
timeline was produced with relaxed constraints (limited 
overboolung allowed), or when a batch engine is presented 
with simplified, or high-level, models and the detailed 
models are used by the schedule repair engine. These 
engines use algorithmic, heuristic, and/or artificial 
intelligence methods to resolve the conflicts. Since the 
repair of one violation sometimes introduces other 
violations, an iterative approach is implemented. Good 
iterative repair engines have logic to avoid local 
minimums and find the overall optimum solution and 
logic to lock selected tasks so that they will not be moved 
by the repair process. A example of an implementation of 
an iterative repair engine is the Automated Scheduling 
and Planning Environment (ASPEN) (Rabideau, 1999) 
developed by the Jet Propulsion Laboratory. 
The primary attribute of batch schedulers is the ability to 
optimize the use of resources and maximize value of the 
timeline. In fact, of the three classes of scheduling 
engines, only batch engines can produce near-optimum 
timelines. For this reason they are the engine of choice for 
unmanned space probes and similar missions. A great 
deal of work has been done to optimize these engines with 
the goal of developing autonomous scheduling systems to 
be installed on spacecrafts. 

Incremental Scheduling Engines 
Incremental engines add each scheduling request to a 
timeline without adjusting the times of already-scheduled 
tasks and without introducing constraint violations or 
resource overbooking. The core logic of an incremental 
engine is usually some form of a greedy algorithm 
(Cormen, 2001); that is it makes choices based only on 
scheduling the current request. Like batch engines, these 
engines may use analytical, heuristic, algorithmic and/or 
artificial intelligence techniques. The logic required to 
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handle the temporal networks of single scheduling request 
is less difficult to develop than the logic required by batch 
engines which need to handle all the temporal networks in 
the timeline. As a result, the models presented to an 
incremental engine can be more complex and can capture 
more of the requirements or can capture the requirements 
more accurately. 
As an incremental scheduling engine schedules a request, 
it behaves like a batch engine with respect to the multiple 
tasks of the scheduling requests. However these tasks 
always have temporal relationships to each other and may 
share the same resources. All tasks scheduled by previous 
scheduling requests are locked and the residual resource 
profiles are treated as initial resource profiles for the 
current request. 
Incremental engines do not provide global optimization. 
However, one technique is available to overcome this 
limitation. Multiple schedules can be produced by 
submitting the scheduling request in different orders; a 
figure of merit can be assigned to each schedule; and the 
best schedule chosen as the solution. This approach is 
commonly called a Monte Carlo solution. Heuristics and 
analytical logic can be applied to get a submission order 
which gives good results. An example of an incremental 
scheduling engine with a Monte Carlo submitter is the 
Experiment Scheduling Program (ESP) (Davis, 1988) 
developed by the Marshall Space Flight Center. 
One novel use for incremental engines arises when 
multiple users are building a single timeline; the engine 
allows each user to add tasks and be sure that subsequent 
action by other users will not change the times of those 
tasks. Section 3 of this paper presents an in-depth 
discussion to two possible uses of incremental Scheduling 
engines that exploit this feature. 

Mixed Initiative Scheduling 
Mixed-initiative scheduling refers to buildmg a timeline 
using a timeline editor; i.e., it is a manual process. Mixed 
initiative is used when the user knows requirements that 
are not described in the requests, the scheduling engine is 
weak, only a few new requests are to be added to the 
timeline, or the user wants to control the results. If the 
user moves already-scheduled tasks, mixed initiative has 
characteristics of a batch scheduler; if the user doesn’t 
move already-scheduled tasks, then mixed initiative has 
the characteristics of an incremental scheduler. 
hhxed-initiative schedulers usually have code to help the 
user avoid violating constraints and often allow the user to 
override constraint limits. In the batch flavor, if the 
models are complete, the editor might invoke iterative- 
repair logic to move other tasks and eliminate constraint 
violation introduced by a manual edit. In the incremental 
flavor, the editor might invoke an incremental scheduler 
to make slight adjustments to the user’s input; this feature 
is called “snap-to.’’ Additionally, the Ator  might use an 

incremental engine to suggest times where tasks can be 
placed without introducing constraint violations. 
Mixed-initiative scheduling does not automatically 
provide global optimization. However if the human user 
is an expert and the problem is straight-forward, global 
optimization might be achieved. 
Currently, all human space missions are scheduled using 
mixed initiative. The Mars Exploration Rover mission 
uses mixed-initiative scheduling as implemented in the 
Mixed Initiative Activity Planning Generator (MAPGEN) 
(Bresina, 2004) developed by Ames Research Center in 
concert with the Jet Propulsion Laboratory. 

Reducing Costs 
Incremental schedulers have the potential to reduce cost. 
Customer participation in ISS operations scheduling is 
used to illustrate one way an incremental scheduling 
engine might reduce cost. This example assumes the use 
of an incremental engine accessed via the web by the users 
of the timeline - each user would schedule his tasks 
without fear that the tasks will be moved. 

Introduction 
In this example, use of the scheduling engine is distributed 
to the actual customers of the timeline. The customers are 
those who benefit by the execution of the timeline; they 
may be scientists, technicians, systems operators, or others 
who have a stake in the mission. Customers access a 
central installation of the scheduling system using remote 
access technology. The typical steps required to build a 
timeline are listed below. 

Flight hardware integration. The customer 
community provides descriptions and requirements of 
the flight hardware as needed by their tasks. Customer 
supplied hardware is integrated into the flight systems. 

A scheduling cadre (specialists 
who assist the customers) builds equipment mode 
models for flight hardware. These mode models define 
the resources and constraints of the hardware in all of 
its operating modes. Note that the scheduling cadre 
does not need to understand the tasks which will use the 
equipment. 

0 Task models. Using remote access, customers build 
their own task models. They have the best knowledge 
of their requirements and are in the best position to 
build their models. They do not need to know the 
details of the resource requirements of the equipment; 
that data is in the equipment models built by the 
scheduling cadre. For example, a customer requesting 
a voice link does not need to request a communication 
link or specify bandwidth consumption; this 
information is in the voice-link mode model. 
Task network models. Using remote access, customers 
build their own task network models. Their objectives 

0 Equipment models. 



drive the temporal relationships between the tasks to be 
done. They know the best task ordering (sequenced, 
overlapped, during, etc.) to accomplish their goals. A 
task network model is the scheduling unit that an 
incremental scheduling engine schedules. 
Submitting. Using remote access, a customer submits 
task network models (the scheduling units) to the 
scheduling system. The scheduling system adds each 
request to the queue of requests for the incremental 
scheduling engine. 
Results. The results of each request are displayed at the 
user's display device when the request is operated on by 
the scheduling engine. If the scheduling engine 
scheduled the request, the results are displayed for the 
customers; the customer can then accept or reject 
(delete) the results. If the engine cannot schedule the 
request, an explanation is displayed. 

0 Re-submitting. For rejected and failed request, the 
customer can modify the request and resubmit. 

0 Timeline verification. Since an incremental scheduler 
is designed to never overbook resources or violate other 
constraints, the scheduling cadre only ensures that the 
timeline meets criteria such as safety. The customers 
have developed the timeline to meet their objectives; the 
cadre does not have the knowledge or the need to 
improve the timeline. Vermng the mode models is not 
needed since only the cadre can change them. 

Using an incremental scheduler to &stribUte timeline 
generation to the customers can provide better customer 
satisfaction and reduce the size of the scheduling cadre. 

Customer participation operations concept 
This concept was first proposed in a paper by Jaap and 
Muery (Jaap, 2000). An overview of the operations 
concept is shown in Figure 1. 
The example concept has a weekly scheduling phase that 
produces the timeline to be executed during the second 
week after it is produced. During any week, three actions 
are occurring: the week after next is being scheduled, next 
week is being prepared and up-linked, and the current 
week is being executed. The preparation phase is closely 
linked to what equipment is on board, which is linked to 
crew change-out or the arrival of a re-supply ship. In ISS 
nomenclature an "expedition" is a period of time that is 
punctuated by a crew change-out; nominally, an 
expedition is 90 days. The preparation phase for an 
expedition precedes the start of the expedition; the 
scheduling phase begins two weeks before the expedition 
starts and continues for the duration of the expedition. 
During the preparation phase, the customers define what 
equipment they need and/or will supply and how it is to be 
used. The cadre creates the equipment mode models 
based on the customers' needs and the cadre's own 
knowledge of how the equipment is installed in the ISS. 
Models may later be updated by the cadre as needed. 
Additionally, a high-level plan for the expedition is 

generated based on customer input, programmatic goals 
and constraints, and various agreements with the partners. 
Based on the expedition plan produced during the 
preparation phase, and other information, the cadre would 
generate daily allocations per payload for the week to be 
scheduled. The allocations are not usage profiles but are 
total usage limits of each resource during the planning 
week. Once the system is initialized with all the resource 
constraints, the customers use the incremental scheduler to 
produce a timeline. As always, producing a good timeline 
requires attempting to schedule a model, rejecting 
unacceptable results, tweakmg the models, and trylng 
again. The incremental scheduler places the customer in 
the middle of this important iteration loop. No one knows 
the payload requirements or what is desired in the timeline 
better than the customer, and no one can produce a 
timeline as good as the one the customer can produce. 
After the customer has completed the scheduling process, 
the timeline is delivered to the cadre for timeline 
verification. Verification consists of checking that safety 
and other criteria are not violated. The cadre will also 
visually inspect the timeline and the models. 
After the timeline is verified, it is passed to the integration 
function where it is integrated with timelines from other 
ISS partners. Simultaneously, i t  is "published" so that the 
customers can review the timeline. If a customer wants to 
have the schedule changed, an execution change request is 
written and submitted to the execution team. Since the 
customer just produced the schedule (of his payload), it is 
unlikely that changes will be required. 

Evaluation 
This operations concept for ISS utilization does not 
provide an optimum schedule. This is no worse than the 
current operations concept based on mixed-initiative 
which also does not provide an optimum schedule. This 
operations concept does have the potential to provide a 
better schedule to the customers while reducing cost. It 
can provide a better schedule because those who have the 
best knowledge of objectives are the actual builders of the 
timeline. It can reduce cost by reducing the size of the 
scheduling cadre - they no longer need to be experts in the 
objectives being scheduled. 

Astronaut Participation 
Astronaut participation will be important on long-duration 
human missions. On short flights like those of the Space 
Shuttle and intermediate duration missions like an ISS 
expedition, the activities of the crew are primarily 
scheduled by the ground controllers. Lack of crew 
planning autonomy has been a topic of discussion for 
decades (Compton, 1983; Hagopian, 1998; Sherman, 
1994), and there is anecdotal consensus among astronauts 
that crew autonomy is a good way to mitigate the stress of 
long-duration missions. Incremental schedulers have the 
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potential to allow true astronaut participation in planning 
their own daily schedule. The astronaut participation 
example is focused on the exploration era when there wdl 
be astronauts on the Moon, Mars, and/or on long-duration 
cruises. 

Introduction 
In this example, the scheduling engine would be co- 
located with the astronauts, and ground personnel 
(controllers, scientists, and others) would remotely access 
the extraterrestrial engine. The typical steps needed to 
allow astronaut participation in building the timeline are 
listed below. 

Baseline timeline. Ground personnel build a timeline 
using a local engine. The steps to build this timeline 
are similar the steps used to build the timeline with 
customer participation as discussed above. 
Timeline Uplink. The timeline and models are 
uplinked to the extraterrestrial engine. 
Astronaut additions. Astronauts add to the timeline as 
they desire using the extraterrestrial engine. Using an 
incremental scheduler ensures that tasks added by the 
astronauts do not change or conflict with previously 
scheduled tasks. 
Re-verification. When time allows, the timeline 
modifications are downlinked to the ground and 
verified. 

Locating the scheduling engine in space will provide the 
astronauts with the ability to manage the schedule and will 
enable more autonomous crewhehicle operations. The 
astronauts WIU be able to make a real-time schedule 
change and get immediate feedback that the change is 
feasible. When the astronauts are far from home with 
significant light-time delays (up to 40 minutes round-trip 
to Mars), and the return home time measured in months, 
astronaut autonomy will enable the safest, most reliable, 
and efficient approach to exploring the cosmos. 

Example operations concept 
This concept was recently proposed by Jaap and Maxwell 
(Jaap, 2005). An overview of this concept is depicted in 
Figure 2. 
The astronaut participation concept assumes an 
installation of the scheduling engine on earth and another 
in space. The earth-based engine is used to build baseline 
models and timelines. The space-based engine is used to 
update the timeline; these updates can be made by the 
astronauts or by earth-based personnel using the remote 
access capabilities of the incremental scheduler. This 
concept provides the astronauts with a complete set of up- 
to-date planning information, and allows them to make 
any additions they desire to the currently executing 
timeline. 
The level of astronaut participation in the scheduling 
process will be dictated by necessity (e&, responding to 

real-time events) as well as by their personal preferences. 
In effect, the concept provides an infrastructure which 
allows multiple parties (astronauts and ground personnel) 
to simultaneously contribute to the development/ 
maintenance of a single timeline. 
Once the planning information is within the scheduling 
system at the remote site, it will be available for use by the 
onboard astronauts. From a local console, they will be 
able to viewhnspect their timelines, make timeline 
changes (by deleting and rescheduling), schedule 
additional “job jar” type tasks via an interface to the 
incremental scheduling engine, and even edit the modeled 
tasks (e.g., change a specified task duration). An interface 
via a personal data assistant could provide access to the 
habitat installation of the scheduling system and allow 
adding to the timeline during outside excursions. 
Earth-based controllers can also remotely access the 
extraterrestrial scheduling system to inspectlverify the 
most current timeline information or to contribute timeline 
changes. To preserve precious crew time, it is envisioned 
that most extensive re-planning efforts will be performed 
by the earth-based controllers, except in those cases where 
communications outages or delays preclude a timely 
ground response to a real-time event. The earth-based 
controllers may also perform timeline edits at the crew’s 
request . 

Evaluation 
This operations concept for the exploration of the cosmos 
does not provide an optimum schedule. However, it 
provides significant participation by the astronauts in the 
development of the timeline. Astronaut participation can 
ameliorate some of the human factor issues anticipated for 
missions exceeding two years in length and where all 
voice communication with the earth is excluded by the 
light-time delay. Addtionally, the example concept will 
allow full autonomy if needed; for example, in case of loss 
of communication for a significant duration. 

Conclusion 
NASA is charting a bold new course to explore the cosmos 
beginning with humans returning to the Moon and 
anticipating a human visit to Mars. Without significant 
advances in operations concepts, these missions will be 
more expensive than necessary. Additionally, there is a 
compelling need for astronaut autonomy to address human 
factor issues and contingency issues introduced by light- 
time delays. 
Of the three classes of scheduling engines (batch, 
incremental, and mixed initiative), incremental engines 
offer significant promise to reduce cost and provide 
substantial astronaut participation. The attributes of 
incremental scheduling engines which enable cost 
reduction and astronaut participation are: 



The logic of the engine can handle more 
completdcomplex models because it schedules only one 
model at a time. More complete models mean that less 
information is maintained outside of the model and less 
mixed-initiative scheduling is needed. 

0 The scheduling cadre does not need to be experts on the 
objective of the temporal networks being scheduled. 
They only need to provide knowledge of the hardware 
and the vehiclehabitat systems. 
Astronauts do not need to be experts on the tasks within 
the models. They can submit any pre-defined model to 
the scheduling engine and, since the model contains all 
the requirements, produce a valid schedule. 

0 Users can add to the timeline without danger of 
modifymg what is already scheduled. For example, 
ground controllers are assured that astronaut additions 
to the timeline do not impact critical tasks. 

0 A user who is scheduling a given model does not need 
to know anything about other models or what is already 
on the timeline. 

0 The independent handling of each scheduling request 
allows simultaneous remote access to the scheduhng 
engine by multiple users. Thus, scheduling can be 
distributed to those who have the best knowledge and 
vested interest in producing a good timeline. 

The examples provided in this paper illustrate the use of 
incremental scheduling engines to reduce costs and 
provide astronaut participation and possibly astronaut 
autonomy. However, significant shifts in operations 
concepts will be needed to take full advantage of the 
attributes of incremental engines. NASA managers are 
challenged to consider the necessary paradigm shifts. 
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